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Receive a 3D model and animation data L~ 510
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Pose the 3D model based on the animation | _- 520
data
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Render the posed 3D model L~ 530
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Save, for each pose, rendered image(s),

deformed 3D control points, a 2D projection of | - 540

the control points, orientations of joints, a
mask, and a normal map

FIG. 5
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TECHNIQUES FOR FEATURE-BASED
NEURAL RENDERING

BACKGROUND

Technical Field

[0001] Embodiments of the present disclosure relate gen-
erally to image rendering and, more specifically, to tech-
niques for feature-based neural rendering.

Description of the Related Art

[0002] Feature animation films generally include high-
definition, high-fidelity characters. Typically, such charac-
ters are animated using high-resolution models and textures
as well as complex proprietary rigs and deformation algo-
rithms.

[0003] The characters from feature animation films are not
easily adaptable to real-time applications, such as computer-
based games and previsualation. Previsualization, also
referred to herein as “previs,” is the visualization of scenes
prior to final animation or filming. For example, motion
capture with a single camera may be employed to visualize
a character’s movement in the early stages of story authoring
and storyboarding. Rendering engines used in real-time
applications typically support only linear blend skinning and
blend shapes, not the proprietary rigs and deformation
algorithms used to render feature animation films. Further,
real-time rendering engines may require lower-resolution
models and textures.

[0004] Currently, no effective techniques exist for deci-
mating or otherwise exporting the high-definition, high-
fidelity assets used in feature animation films to low-reso-
Iution assets compatible with real-time rendering engines.
As a result, low-resolution assets, such as characters re-
modeled with fewer polygons, re-textured with lower-reso-
Iution materials, and re-rigged with only skeletal linear
blend skinning and blend shapes, need to be created manu-
ally from scratch. The creation of such low-resolution assets
can be time consuming and labor intensive. Additionally,
manual effort is required to set up a character to be com-
patible with different sources of motion.

[0005] As the foregoing illustrates, what is needed in the
art are more effective techniques for rendering high-resolu-
tion characters in real-time applications.

SUMMARY

[0006] One embodiment of the present application sets
forth a computer-implemented method for rendering an
image. The method includes determining pose information
for a first character based on a control signal, and processing
the pose information using a trained machine learning model
to generate a rendering of the first character.

[0007] Another embodiment of the present application
sets forth a computer-implemented method for training a
machine learning model. The method includes receiving
training data that includes a plurality of rendered images and
an associated set of control points for each rendered image.
The method further includes training the machine learning
model based on a perceptual loss between one or more
images generated by the machine learning model and one or
more associated rendered images included in the training
data.
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[0008] Other embodiments of the present disclosure
include, without limitation, a computer-readable medium
including instructions for performing one or more aspects of
the disclosed techniques as well as a computing device for
performing one or more aspects of the disclosed techniques.
[0009] At least one technical advantage of the disclosed
techniques relative to the prior art is that, in the disclosed
techniques, a machine learning model is implemented that
translates control points to two-dimensional (2D) rendered
images, without requiring full resolution geometry or pro-
prietary rigs or deformers. As a result, computer graphics
(CG) characters, including high-resolution characters tradi-
tionally limited to feature animation films, can be controlled
or puppeteered using 2D (or 3D) control points, such as a
skeleton. Examples of real-time applications of techniques
disclosed herein include (1) previs, in which, e.g., motion
capture data from a single camera can be fed into a machine
learning model to generate renderings of a character; and (2)
computer-based games. Further, a perceptual loss for train-
ing the machine learning model is disclosed that converges
successfully more often than traditional discriminators used
in adversarial learning. In addition, a common interface is
disclosed that permits different sources of motion to be
transformed to the common interface and input into a
machine learning model that renders 3D characters. These
technical advantages represent one or more technological
improvements over prior art approaches.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] So that the manner in which the above recited
features of the disclosure can be understood in detail, a more
particular description of the disclosure, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this disclosure and are therefore not
to be considered limiting of its scope, for the disclosure may
admit to other equally effective embodiments.

[0011] FIG. 1 illustrates a system configured to implement
one or more aspects of various embodiments;

[0012] FIG. 2 illustrates an exemplary architecture of a
machine learning model, according to various embodiments.
[0013] FIG. 3 illustrates an approach for generating a
training data set and then training a machine learning model,
according to various embodiments;

[0014] FIG. 4 illustrates an approach for rendering a
character using a trained machine learning model, according
to various embodiments;

[0015] FIG. 5 sets forth a flow diagram of method steps for
generating a training data set including rendered characters
and associated pose information, according to various
embodiments;

[0016] FIG. 6 sets forth a flow diagram of method steps for
training a machine learning model to render a character
based on pose information, according to various embodi-
ments; and

[0017] FIG. 7 sets forth a flow diagram of method steps for
rendering a character using a trained machine learning
model, according to various embodiments.

DETAILED DESCRIPTION

[0018] In the following description, numerous specific
details are set forth to provide a more thorough understand-
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ing of the present invention. However, it will be apparent to
one of skill in the art that embodiments of the present
invention may be practiced without one or more of these
specific details.

[0019] FIG. 1 illustrates a system 100 configured to imple-
ment one or more aspects of various embodiments. As
shown, the system 100 includes a machine learning server
110, a data store 120, and a computing device 140 in
communication over a network 130, which may be a wide
area network (WAN) such as the Internet, a local area
network (LAN), or any other suitable network.

[0020] As shown, a data generating application 116 (“data
generator”) executes on a processor 112 of the machine
learning server 110 and is stored in a memory 114 of the
machine learning server 110. Although shown as a server for
illustrative purposes, it should be understood that the
machine learning server 110 is not required to be a server
and may generally be any type of computing system. The
processor 112 receives user input from input devices, such
as a keyboard or a mouse. In operation, the processor 112 is
the master processor of the machine learning server 110,
controlling and coordinating operations of other system
components. In particular, the processor 112 may issue
commands that control the operation of a GPU that incor-
porates circuitry optimized for graphics and video process-
ing, including, for example, video output circuitry. The GPU
may deliver pixels to a display device that may be any
conventional cathode ray tube, liquid crystal display, light-
emitting diode display, or the like.

[0021] A system memory 114 of the machine learning
server 110 stores content, such as software applications and
data, for use by the CPU 112 and the GPU. The system
memory 116 may be any type of memory capable of storing
data and software applications, such as a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash ROM),
or any suitable combination of the foregoing. In some
embodiments, a storage (not shown) may supplement or
replace the system memory 116. The storage may include
any number and type of external memories that are acces-
sible to the CPU 112 and/or the GPU. For example, and
without limitation, the storage may include a Secure Digital
Card, an external Flash memory, a portable compact disc
read-only memory (CD-ROM), an optical storage device, a
magnetic storage device, or any suitable combination of the
foregoing.

[0022] It will be appreciated that the machine learning
server 110 shown herein is illustrative and that variations
and modifications are possible. For example, the number of
CPUs 112, the number of GPUs, the number of system
memories 114, and the number of applications included in
the system memory 114 may be modified as desired. Further,
the connection topology between the various units in FIG. 1
may be modified as desired. In some embodiments, any
combination of the CPU 112, the system memory 114, and
a GPU may be replaced with any type of virtual computing
system, distributed computing system, or cloud computing
environment, such as a public or a hybrid cloud.

[0023] As discussed in greater detail below, the data
generator is configured to generate training data based on a
three-dimensional (3D) model and animation data. In some
embodiments, the data generator 116 may be any suitable
renderer or software toolset that renders the 3D model in
various poses based on the animation data. Examples of
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renderers include the RenderMan® and Hyperion renderers.
In particular, the rendered images may depict a character in
poses corresponding to poses of a two-dimensional (2D)
skeleton or other control points, and the data generator 116
may generate multiple renderings of the character in differ-
ent poses and views. As used herein, a control point, which
is also sometimes referred to as a “handle,” is a position that
can be controlled to update the pose of a character. A
skeleton is one example of a set of control points, in which
the position and rotation angles of various joints in the
skeleton may be adjusted or manipulated to achieve a
desired character pose.

[0024] The data generator 116 saves the images it renders,
as well as related data such as masks, normal maps, and
depth maps generated along with the rendered images and
2D skeleton pose information associated with the rendered
images, to use as training data. Based on such training data,
a model training application 118 (“model trainer”) that also
resides in the memory 114 and executes on the processor 112
trains a machine learning model that takes as input 2D (or
3D) pose information, such as a rendering of control points
(e.g., a skeleton), and outputs a corresponding rendering of
the character, as well as a mask and normal map, and
optionally a depth map. The architecture of the machine
learning model and techniques for training the same are
discussed in greater detail below.

[0025] Training data and/or trained machine learning
models may be stored in the data store 120. In some
embodiments, the data store 120 may include any storage
device or devices, such as fixed disc drive(s), flash drive(s),
optical storage, network attached storage (NAS), and/or a
storage area-network (SAN). Although shown as accessible
over the network 130, in some embodiments the machine
learning server 110 may include the data store 120. In
embodiments, the data store 120 may include one or more
databases. As such, system 100 may include a database
management system (DBMS) for accessing and storing data
in the data store 120.

[0026] Trained machine learning models may be deployed
to applications that render images of characters using such
machine learning models. Illustratively, a rendering appli-
cation 146 is stored in a memory 144, and executes on a
processor 142, of the computing device 140. Components of
the computing device 140, including the memory 144 and
processor 142 may be similar to corresponding components
of the machine learning server 110 and will not be described
in detail herein for conciseness. As discussed in greater
detail below, the rendering application 146 may receive a
control signal, such as a joystick signal or a video, that
controls control points such as a 2D skeleton. The rendering
application 146 is configured to (optionally) transform such
a control signal to the format of'a common interface that the
rendering application 146 feeds to the trained machine
learning model, which in turn outputs a rendering of a
character based on the input. The machine learning model
may also output a mask and a normal map (and optionally
a depth map), which may be used to compose the rendering
of'the character into a scene. As a result, a computer graphics
(CG) character can be controlled or puppeteered using a 2D
(or alternatively, a 3D) skeleton.

[0027] The number of machine learning servers and appli-
cation servers may be modified as desired. Further, the
functionality included in any of the applications may be
divided across any number of applications or other software
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that are stored and execute via any number of devices that
are located in any number of physical locations.

[0028] FIG. 2 illustrates an exemplary architecture of a
machine learning model 200, according to various embodi-
ments. Although a particular architecture of the machine
learning model 200 is shown for illustrative purposes, it
should be understood that, in other embodiments, any tech-
nically feasible machine learning model may be trained and
used to render images depicting characters.

[0029] As shown, the machine learning model 200
receives a rendering of a 2D skeleton 202 and associated 3D
information 204 as inputs. Although the rendering of the 2D
skeleton 202 and the 3D information 204 are shown as
examples, in other embodiments any suitable 2D or 3D
control points and associated 3D information may be taken
as input, and the input may further be defined by a common
interface, as discussed in greater detail below. The machine
learning model 200 is configured to translate the rendering
of the 2D skeleton 202 (or other 2D or 3D control points)
into a rendered image 240 depicting a character in the same
“pose” as the 2D skeleton, as well as an associated mask 242
and normal map 244 (and optionally a depth map), which are
discussed in greater detail below.

[0030] As shown, the machine learning model 200 is a
modification of a 2D U-Net architecture 201 with skip
connections that incorporates 3D information 204, when
such information is available. U-net is an encoder-decoder
architecture traditionally used for image translations. Expe-
rience has shown that using the rendering of the 2D skeleton
202 alone, without the 3D information 204, admits ambi-
guities, as the same 2D skeleton can correspond to multiple
3D skeletons. Such ambiguities can, in turn, cause visual
artifacts in the rendered image 240, as the machine learning
model 200 attempts to “average” the different 3D possibili-
ties. Incorporating the 3D information 204 can solve this
problem. For example, in some embodiments, the 3D infor-
mation 204 that the machine learning model 200 receives
may include volumes of occupancy, slices of positions,
orientations, and/or depth, etc. Ideally, the 3D information
204 should include position and orientation information. As
discussed in greater detail below, the machine learning
model 200 may also be trained differently from the tradi-
tional U-Net encoder-decoder, using a perceptual loss
between a generated image and a ground truth image rather
than the traditional discriminator used in adversarial learn-
ing.

[0031] Illustratively, the 2D U-Net architecture 201
includes a number of decreasing blocks of encoding, includ-
ing blocks and 214 and 216. The blocks of encoding are
blocks of convolutions that each reduces the image size by,
e.g., 2, with the blocks creating a set of various versions of
an input image as the image is transformed. The versions of
the input are also referred to herein as “features.” After each
encoding block, a skip connection, such as the skip connec-
tions 221a and 2215, is linked to the decoding layers, which
permits the reconstruction by the decoding layers to benefit
from processed information from the encoding. The encod-
ing ultimately produces a sequence of 1x1, i.e., scalar
features 222. Such a sequence of 1x1 features 222 may then
be reconstructed by the decoding layers, which as shown
includes a number of blocks of decoding, including blocks
226 and 230. As described, the decoding may reuse the
information from the skip connections to help in the recon-
struction process. During the decoding, the sequence of 1x1
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features 222 from the bottleneck passes through successive
deconvolutions that expand the resolution of the features
from, e.g., 1x1, to 2x2, to 4x4, etc. Each time, the features
are further concatenated with the features from the encoding
process received via the skip connections. Doing so re-uses
some the features that may be required to know, e.g., the
orientations of limbs, etc.

[0032] For example, assume the rendering of the 2D
skeleton 202 is a 256x256 pixel image (it should be under-
stood, however, that the rendering 202 may generally be of
any size). In such a case, the U-Net architecture 201 in the
machine learning model 200 could include eight decreasing
blocks of encoding, each of which includes a 4x4 convolu-
tion with stride 2 followed by a 3x3 convolution with stride
1, and further followed by a non-linear activation function.
Encoding begins with 64 convolutions and increases to 512
as the filter size is reduced. As described, a skip connection
may also be linked to the decoding layers after each such
encoding block, and the result of encoding in this case may
be a sequence of 1x1 features of length 512.

[0033] In a particular embodiment, the U-Net architecture
201 in the machine learning model 200 may include eight
layers of encoding from a 256x256 resolution rendering of
the 2D skeleton 202 to the sequence of 1x1 features 222, and
a further eight layers that decode the 1x1 features 222 back
to the 256x256 rendered image 240, the mask 242, and the
normal map 244. In such a case, the eight layers of the
encoder may be: C64-C128-C256-C512-C512-C512-C512-
C512, and the eight layers of the decoder may be: C512-
C512-C512-C512-C256-C128-C64.

[0034] As described, the 2D U-Net architecture 201 is
adapted in embodiments to account for the 3D information
204, which as described may include, e.g., volumes of
occupancy, slices of positions, orientations, and/or depth,
etc. For example, the 3D information 204 could include
volume of occupancy, with volumes occupied by a character
represented by 1 and the remaining volumes represented by
0. As another example, the 3D information 204 could
include multiple slices indicating the x, y, and z components
of each joint of the 2D skeleton. As yet another example, the
3D information 204 could include a depth map indicating
the depth of every pixel in the rendering of the 2D skeleton
202. In a further example, the 3D information 304 could
include slices that provide 3D orientation information.

[0035] In some embodiments, the 2D U-Net architecture
201 may be informed (i.e., augmented), via skip connec-
tions, by 3D processed features. As shown, the 3D infor-
mation may be reduced along the x and y dimensions, which
also reduces the 3D information in the z dimension, by a
number of encoder blocks, such as encoder blocks 206 and
208. That is, as the x-y image dimensions are reduced by the
3D encoder blocks, the depth information is also reduced.
For example, the depth slices may be reduced by 2 every
time the encoding reduces the x, y dimensions by half. The
result of the encoding is 1x1x1 features 210 at the bottle-
neck. After each block of encoding, the processed features
are concatenated with outputs of corresponding encoding
blocks of the 2D U-Net architecture 201 at, e.g., 216 and
220. That is, the 2D U-Net architecture 201 is augmented by
the 3D processed features via skip connections that concat-
enate the features. In particular, the 2D skeleton 202 and 3D
information 204 pass through separate convolution layers,
but skip connections are used to concatenate the 3D and 2D
features. Doing so may help in the encoding and decoding
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process, as the 3D information may help remove ambiguities
that could otherwise cause artifacts in the final rendering if
only 2D information were used. As shown, the processed
features are further passed down to the reconstruction units
(e.g., the blocks 226 and 230) to be concatenated with other
features to provide additional 3D-related features to aid the
reconstruction. It should be noted, however, that 3D vol-
umes or information do not need to be reconstructed, as the
machine learning model 200 may only reconstruct the 2D
rendered image 240, mask 242, normal map 244, etc.

[0036] As a specific example, assume the 3D information
204 is 3D volumetric input in the form of a volumetric
occupancy map of 256>, or multiple 256x256 images, which
may be, e.g., slices indicating the scalar occupancy of the
joints, slices indicating the x, y, and z components of each
joint of a 3D skeleton, slices that provide 3D orientation, or
any other suitable 3D information, as described above. Then,
the encoding blocks 206, 208, etc. may include volumetric
convolutional filters that encode and reduce in all three
dimensions, yielding arrays of volumetric features. For
example, the first encoding block 206 may be a C364
volumetric convolution encoding block that produces 128°x
64 features, the second encoding block 208 may be a C>128
volumetric encoding block that produces 64°x128 features,
etc. In such a case, the volumetric convolution filters may
include the following volumetric convolutions, denoted by
C*: C?64-C>128-C>256-C>512-C>512-C>512-C>512-
C?512. Each of these volumetric convolutions reduces all
dimensions (%, y, and z) by 2, proceeding all the way down
to a 1x1x1x512 (i.e., 1°x512) sequence of features. In some
embodiments, the features output by the volumetric convo-
Iutions may be concatenated with feature outputs of corre-
sponding encoding modules (e.g., the encoding blocks 214,
216, etc.) of the 2D U-Net architecture 201 at symmetric
resolutions (e.g., 128°x64 with corresponding 128x64).
Some embodiments may include skip connections to the last
reconstruction layers where the final rendering is decoded.
Further, the 1°x512 sequence of features (corresponding to
the sequence of 1x1x1 features 210) that results from
encoding the 3D information may be concatenated with a
1x1x512 (i.e., 12°x512) sequence of features (corresponding
to the sequence of 1x1 features 222) generated by the
encoder of the 2D U-Net architecture 201 during input
skeleton image encoding, producing a 1°x1024 sequence of
features as the output of the encoding.

[0037] Continuing the example, decoding blocks (e.g., the
blocks 230 and 226) may apply successive deconvolutions
to the encoded 1°x1024 sequence of features, while reusing
information from skip connections to help in the reconstruc-
tion process, as described above. In particular, volumetric
features may be concatenated with planer features during the
decoding. For example, the decoding block 230 may be a
deconvolution filter that yields 128°x64 features that are
concatenated with 128°x64 volumetric features from the
encoding block 206, yielding 128°x8256 features. It should
be noted that the 3D volumes or information is not re-
constructed in some embodiments. Rather, the decoding
may only reconstruct the 2D rendered image, mask, normal
maps, and (optionally) depth.

[0038] As described, the machine learning model 200
outputs the rendered image 240 depicting a character, from
which the rendering of a 2D skeleton 202 was translated, as
well as the associated mask 242 and normal map 244 (as
well as an optional depth map). The mask 242 indicates
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whether pixels of the rendered image 240 belong to a
background or to the character depicted therein. For
example, the mask 242 could include pixels whose values
are either 0, indicating the background, or 1, indicating the
character. It should be understood that the rendering appli-
cation 146 may use the mask 242 to overlay the character
depicted in the rendered image 240 onto different back-
grounds. The normal map 244 indicates surface normals in
the rendered image 240. For example, the normal map 244
could include a respective vector for each pixel of the
character indicating a surface normal direction. It should be
understood that the rendering application 146 may use such
surface normals to re-light the character depicted in the
rendered image 240 in different environments.

[0039] Insome embodiments, the machine learning model
200 may also output depths of pixels in the rendered image
240 in a depth map. For example, in the context of games,
depth information may be used to determine collisions (e.g.,
2D collisions) between the rendered character and other
visible objects in a 3D scene. By implementing a machine
learning model 200 that also predicts depth, synergies within
the network may be created, permitting more accurate
predictions of the rendered image 240, the mask 242, the
normal map 244, and/or the depth map.

[0040] FIG. 3 illustrates an approach for generating a
training data set and then training a machine learning model,
such as the machine learning model 200 described above
with respect to FIG. 2, according to various embodiments.
As shown, the data generator 116 receives as inputs a 3D
model 310, which is associated with 3D control points, and
a collection of 3D motions 320. For example, the 3D model
310 could be a high-resolution model used in feature ani-
mation films. However, the 3D model 310 does not need to
be such as a high-resolution model. The data generator 116
combines the 3D model 310 and 3D motions 320 by
rendering the character represented by the 3D model 310 in
different views and poses, as the 3D model 310 is animated
according to the 3D motions 320. As described, the data
generator 116 may be any suitable renderer, or software
toolset, capable of performing such rendering.

[0041] As shown, the data generator 116 outputs the
rendered images 330, as well as associated masks 370 and
normal maps 380. Optionally, depth information, such as
depth maps, may also be output and saved. Ideally, the
training data set should include extreme cases and a large
variety of poses that covers well the space of poses. When
the 3D model 310 is posed using the 3D motions 320, the
associated control points are also deformed, as the control
points may be parameterized by the surface mesh of the 3D
model 310. At runtime, such posing may produce 3D poses
in the proportions of a user, as discussed in greater detail
below. Illustratively, the data generator 116 also saves the
3D control points 340 after such a deformation, as well as
projected 2D positions 350 of those control points 340 and
joint orientations 360. In some embodiments, the data gen-
erator 116 may go through a database of 3D poses to deform
and render the character, while saving the 3D control points
340 and the 2D projected positions 350. In addition, the
masks 370, normal maps 380, and depth information (not
shown) may be saved as well, which can all be learned by
a machine learning model and predicted as a function of the
control points.

[0042] The joint orientations 360 are rotational values. For
example, a wrist joint may store the orientation of the hand,
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which may be represented as, e.g., angles, matrices (nor-
malized directional vectors), or normalized quaternions. As
a particular example, slices may be output by the data
generator 116, with each slice being an angle component of
the orientation.

[0043] As described, the 3D character mesh of the 3D
model 310 may be used to parameterize the position and
orientation of control points. In some embodiments, a com-
mon interface, including 2D or 3D control points, or a
skeleton, may be defined. Such a common interface is used
to control the trained machine learning model, and various
control signals (e.g., a 2D skeleton generated by a pose
predictor based on a video, a joystick signal, etc.) may be
transformed to the common interface and input into the
machine learning model. A weighted average of binding
triangle meshes is assumed. A common interface may be
defined as a set of control parameters that parameterize the
shape of the character. The control parameters in a common
interface may include 2D control points, but may also
include 3D orientation points (with 3 positions and 3
angles). Further, the control points may be dense (e.g., a
mesh) or sparse (e.g., a skeleton). It should be understood
that the common interface (e.g., 2D points, 3D points, or
skeleton) is how the character is controlled and what the
machine learning model is trained on. In some embodi-
ments, a 2D skeleton is often used as the common interface,
as image-based pose predictors can be more successfully
trained with skeleton data that may include points more
strongly correlated to body pixels in an image. Further, the
first step of the data generation process may include defining
the common interface. For example, the 3D skeleton of a
character may need to be parameterized by the shape of the
character, such that labeled data can be produced indicating
those proportions.

[0044] As shown, the model trainer 118, takes as inputs
the rendered images 330, 3D control points 340, projected
2D positions 350, joint orientations 360, masks 370, and
normal maps 380. In some embodiments, the model trainer
118 may also take as inputs depth maps. Using such inputs
as a set of training data, the model trainer 118 learns a
mapping between control points and rendered images of the
character. The mapping is shown as a trained machine
learning model 390, and such a mapping allows the image-
based 3D character to be parameterized by the control
points. For example, the trained model 390 could have the
architecture of the machine learning model 200 described
above with respect to FIG. 2.

[0045] In some embodiments, the model trainer 118 trains
the machine learning model 390 using adversarial learning
and a perceptual loss between images generated by the
machine learning model 390 and ground truth images (e.g.,
the rendered images 330). This is in contrast to the tradi-
tional discriminator used in adversarial learning to train
traditional U-Net architectures, which experience has shown
has difficulty converging successfully. The perceptual loss in
some embodiments may be defined based on a number of
layers of a pre-trained deep neural network that is trained for
classification. In such cases, the pre-trained network is used
to transform the predicted and ground truth images, with the
model trainer 118 essentially attempting to make the pre-
dicted and ground truth images close to one another in the
“eyes” of the pre-trained network whose layers are used to
filter those images. Experience has shown that confining the
loss to the lower-resolution filtered images may help achieve
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convergence during training. For example, the perceptual
loss could be the L1 norm of the VGG(M*I) between the
predicted and the ground truth image, where M is the mask,
1 is the image, VGG is the first five layers of a pre-trained
VGG (Visual Geometry Group) convolutional neural net-
work, and the .1 norm (also sometimes referred to as the
Manhattan Distance or Taxicab norm) between vectors is
defined as the sum of the lengths of projections of the line
segment between the points onto the coordinate axes.
Although the VGG convolutional neural network is used
herein as an illustrative example, alternative embodiments
may employ one or more layers of other convolutional
neural networks or machine learning models. In addition, the
model trainer 118 may train the machine learning model 390
using a loss that is simply the L1 norm between the
prediction and ground truth for the normal map and mask
that the machine learning model 390 is also trained to
output.

[0046] In some embodiments, the training process may
use a subset of the training data to train the machine learning
model 390, which is then evaluated using another subset of
the training data. For example, a majority of the training data
may be used to train the machine learning model, and the
remainder of the training data used to evaluate the trained
model. Evaluation of trained machine learning models may
include validating that the trained models perform suffi-
ciently well (e.g., less than some desired error).

[0047] FIG. 4 illustrates an approach for rendering a
character using the trained machine learning model 390,
according to embodiments. As described, in some embodi-
ments, the rendering application 146 or a user may control
a 3D character using a 2D skeleton or other control points.
As shown, the rendering application 146 is configured to
feed, into the machine learning model 390, a set of such
control points, shown as a rendered skeleton 430 derived
from an image 420, and associated 3D information 410. In
some embodiments, the rendering application 146 may first
convert a received control signal to a common interface and
input the converted data into the machine learning model
390. For example, the rendering application 146 could
determine a 2D or 3D skeleton from a video using a
well-known pose prediction technique. Then, the rendering
application 146 could re-target the 3D skeleton into the
common 3D skeleton by copying joint angles to the common
interface, which is then fed into the machine learning model
390. In the case of 2D skeletons, heuristics based on body
proportions may adjust the user’s skeleton to the proportions
of the common interface, which may then be fed into the
machine learning model 390.

[0048] As described, the machine learning model 390
outputs a rendered image, shown as the rendering of the 3D
character 440, along with a mask 442 and a normal map 444,
which the machine learning model 390 generates based on
the skeleton 430 and the associated 3D information 410. The
machine learning model 390 may also (optionally) output a
depth map. Rendered images output by the machine learning
model 390 may differ from the rendered images 330 used
during training in some cases. Typically, if new data points
are in between training data points on a manifold, then a
trained machine model such as the machine learning model
390 may be able to generalize to the new data points.
Conversely, if the new data points lie outside such a mani-
fold and the machine learning model has never seen such
data points before, then the machine learning model may be
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unable to extrapolate. As described, the training data set
should include extreme cases and a large variety of poses
that covers well the space of poses. Even in the worst case,
the machine learning model should be able to find a ren-
dering close by, i.e., a nearest neighbor if the machine
learning model is unable to generalize.

[0049] Illustratively, the rendering application 146 has
used the mask 442 to compose the rendered character into a
scene in a rendering 450. For example, the rendered char-
acter could be added to an augmented reality (AR) environ-
ment. Further, the rendering application 146 may perform
some re-lighting by sampling the normal map 444 and
computing a product of the sampled normal map with light
directions in the new environment. In the context of a
computer-based game, the machine learning model 339 may
also output depth, and the rendering application 146 could
determine collisions between the rendered character and
other objects based on such depth when producing the
rendering 450. In some embodiments, the machine learning
model 339 may render the character with occlusions to
support visual interaction with scene objects in a game. As
a result, 2D single camera motion capture can be used to
produce the rendering 450 of the character overlaid in the
scene.

[0050] FIG. 5 sets forth a flow diagram of method steps for
generating a training data set including rendered characters
and associated pose information, according to various
embodiments. Although the method steps are described in
conjunction with the system of FIG. 1, persons of ordinary
skill in the art will understand that any system configured to
perform the method steps, in any order, is within the scope
of the present disclosure.

[0051] As shown, a method 500 begins at step 510, where
the data generator 116 receives a 3D model and animation
data. For example, the 3D model 310 could be a high-
resolution model used in a feature animation film. At step
520, the data generator 116 poses the 3D model based on the
animation data, and then, at step 530, the data generator 116
renders the posed 3D model. Any suitable 3D rendering
technique may be employed to render the posed model. As
described, control points associated with the 3D are also
deformed when the 3D model is posed, as the control points
may be parameterized by the surface mesh of the 3D model.

[0052] At step 540, the data generator 116 saves, for each
pose of the 3D model, rendered image(s), deformed 3D
control points, a 2D projection of control points, and orien-
tations of joints, a mask, and a normal map. As described,
the data generator 116 may render the character represented
by the 3D model 310 in different views and poses, and the
data generator 116 may save such renderings along with
other information typically generated by renderers, such as
a mask and normal map, as well as the 3D (and projected
2D) control points, and orientation of joints, that are
deformed along with the posed 3D model. In addition, a
depth map may also be generated and saved in some
embodiments.

[0053] FIG. 6 sets forth a flow diagram of method steps for
training a machine learning model to render a character
based on pose information. Although the method steps are
described in conjunction with the system of FIG. 1, persons
of ordinary skill in the art will understand that any system
configured to perform the method steps, in any order, is
within the scope of the present disclosure.
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[0054] As shown, a method 600 begins at step 610, where
the model trainer 118 receives a training data set. In some
embodiments, the training data may include data output by
the data generator 116, including a character rendered in
different poses and views, together with a mask of the
character and control point (e.g., 2D skeleton pose) infor-
mation. As described with respect to FIG. 5, the data
generator 116 may generate rendered images of the character
and associated deformed 3D control points, 2D projections
of control points, orientations of joints, masks, normal maps,
and (optionally) depth maps in some embodiments.

[0055] At step 620, the model trainer 118 trains a machine
learning model based on a perceptual loss between images
that are generated by the machine learning model and
ground truth images in the training data set. As described, in
some embodiments the model trainer 118 may feed pre-
dicted and ground truth images into a pre-trained deep
neural network and compute the perceptual loss as a L1
norm between features output by a number of layers of the
pre-trained network. In addition, the model trainer 118 may
train the machine learning model using a loss that is simply
the L1 norm between the prediction and ground truth for a
normal map and a mask (and an optional depth map) that the
machine learning model is also trained to output.

[0056] FIG. 7 sets forth a flow diagram of method steps for
rendering a character, according to various embodiments.
Although the method steps are described in conjunction with
the system of FIG. 1, persons of ordinary skill in the art will
understand that any system configured to perform the
method steps, in any order, is within the scope of the present
disclosure.

[0057] As shown, a method 700 begins at step 710, where
the rendering application 146 receives a control signal. Any
technically feasible signal may be received, such as a video
including frames from which a posed skeleton may be
extracted, a signal from a joystick used to control a skeleton,
etc. For example, in the context of previs, a user may
perform in front of a camera, and estimates could be made
of 2D and/or 3D skeletons from a video captured by the
camera. As another example, in the context of a soccer game
in which a developer has used a library of animations of
players kicking a ball to train a machine learning model to
render 2D depictions of the players kicking the ball, a user
could use a joystick to control a 3D or 2D skeleton that in
turn controls the rendering of a player. In some embodi-
ments, the game engine may control the 3D or 2D skeleton
by blending animation clips. For example, there may be a
predefined 3D animation clip for walking forward and
another clip for walking to the right, but to turn at a different
rate, such as between the full turn right and walking forward,
the game engine may blend (interpolate) the forward and
right turn clips rather than storing large amounts of anima-
tion clips for each possible turning direction. That is, the
rendering application 146 may blend and mix animation
clips to span a larger range of possible motions with fewer
clips.

[0058] At step 720, the rendering application 146 deter-
mines 2D control points based on the control signal. As
described, determining the 2D control points may include
transforming the control signal into a common interface for
controlling the character using predefined transformation
functions. Returning to the example of 3D skeleton poses in
the previs case, the rendering application 146 could deter-
mine the 2D control points for input into a trained machine
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learning model by, e.g., rendering the 3D skeleton to a 2D
image. In alternative embodiments, the machine learning
model may be trained to take as input a 3D skeleton, in
which case the 3D skeleton would not need to be projected
to 2D.

[0059] At step 730, the rendering application 146 pro-
cesses the 2D control points using a trained machine learn-
ing model to generate a rendering of a character, a mask, and
a normal map. As described, a machine learning model, such
as the adaptation of the U-Net architecture discussed above
with respect to FIG. 2, may be trained to output such a
rendering, mask, and normal map. Optionally, the machine
learning model may also output a depth map.

[0060] At step 740, the rendering application 146 (option-
ally) composes the character into a scene. For example, the
rendering application 146 could multiply the mask with the
rendered image and place the result in different back-
grounds, such as in an AR environment. In addition, the
rendering application 146 may perform re-lighting by sam-
pling the normal map and computing a product of the
sampled normal map with light directions in a new envi-
ronment. As another example, in the context of a game, the
rendering application 146 could determine collisions
between the rendered character and other objects based on
depth output by the machine learning model. In some
embodiments, the machine learning model may also render
the character with occlusions to support visual interaction
with scene objects.

[0061] In sum, techniques are disclosed for learning a
machine learning model that maps control data, such as
renderings of skeletons, and associated 3D information to
2D renderings of a character. The machine learning model
may be an adaptation of the U-Net architecture that accounts
for 3D information and is trained using a perceptual loss
between images generated by the machine learning model
and ground truth images. Once trained, the machine learning
model may be used to animate a character, such as in the
context of previs or a video game, based on control of
associated control points.

[0062] At least one technical advantage of the disclosed
techniques relative to the prior art is that, in the disclosed
techniques, a machine learning model is implemented that
translates control points to 2D rendered images, without
requiring full resolution geometry or proprietary rigs or
deformers. As a result, computer graphics (CG) characters,
including high-resolution characters traditionally limited to
feature animation films, can be controlled or puppeteered
using 2D (or 3D) control points, such as a skeleton.
Examples of real-time applications of techniques disclosed
herein include (1) previs, in which, e.g., motion capture data
from a single camera can be fed into a machine learning
model to generate renderings of a character; and (2) com-
puter-based games. Further, a perceptual loss for training the
machine learning model is disclosed that converges success-
fully more often than traditional discriminators used in
adversarial learning. In addition, a common interface is
disclosed that permits different sources of motion to be
transformed to the common interface and input into a
machine learning model that renders 3D characters. These
technical advantages represent one or more technological
improvements over prior art approaches.

[0063] 1.In some embodiments, a computer-implemented
method for rendering an image that includes at least one
character comprises: determining pose information for a first
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character based on a control signal; and processing the pose
information using a trained machine learning model to
generate a rendering of the first character.

[0064] 2. The computer-implemented method according to
clause 1, wherein determining the pose information includes
rendering a skeleton.

[0065] 3. The computer-implemented method according to
clause 1 or clause 2, wherein processing the pose informa-
tion further comprises generating at least one of a mask, a
normal map, and a depth map associated with the rendering
of the first character.

[0066] 4. The computer-implemented method according to
any of clauses 1-3, further comprising composing the ren-
dering of the first character into a scene based on the at least
one of the mask, the normal map, and the depth map.
[0067] 5. The computer-implemented method according to
any of clauses 1-4, wherein the scene comprises an aug-
mented reality (AR) scene.

[0068] 6. The computer-implemented method of accord-
ing to any of clauses 1-5, wherein the scene is included
within a computer-based game.

[0069] 7. The computer-implemented method according to
any of clauses 1-6, wherein the machine learning model
includes a two-dimensional (2D) U-Net architecture adapted
to incorporate three-dimensional (3D) information.

[0070] 8. The computer-implemented method of accord-
ing to any of clauses 1-7, wherein: the 3D information is
processed via layers distinct from the 2D U-Net architecture;
and the processed 3D information is used to augment the 2D
U-Net architecture via skip connections.

[0071] 9. The computer-implemented method of accord-
ing to any of clauses 1-8, wherein the machine learning
model is trained based on a perceptual loss between images
generated by the machine learning model and associated
rendered images included in a set of training data.

[0072] 10. The computer-implemented method according
to any of clauses 1-9, wherein the control signal comprises
a joystick signal or a video signal.

[0073] 11. In some embodiments, a computer-imple-
mented method for training a machine learning model
comprises: receiving training data that includes a plurality of
rendered images and an associated set of control points for
each rendered image; and training the machine learning
model based on a perceptual loss between one or more
images generated by the machine learning model and one or
more associated rendered images included in the training
data.

[0074] 12. The computer-implemented method according
to clause 11, wherein each of the associated sets of control
points includes a respective rendering of a skeleton.
[0075] 13. The computer-implemented method according
to clause 11 or clause 12, wherein the rendered images
depict a character in poses corresponding to poses in the
renderings of the skeleton.

[0076] 14. The computer-implemented method according
to any of clauses 11-13, wherein the perceptual loss is
defined based on a plurality of layers of a deep neural
network trained for classification.

[0077] 15. The computer-implemented method according
to any of clauses 11-14, wherein the perceptual loss is
defined as an L1 norm C(M*I) between the images gener-
ated by the machine learning model and the corresponding
rendered images in the training data, wherein M is a mask,
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1 is an image, and C is a plurality of layers of a pre-trained
convolutional neural network.

[0078] 16. The computer-implemented method according
to any of clauses 11-15, wherein training the machine
learning model comprises performing one or more adver-
sarial learning operations.

[0079] 17. The computer-implemented method according
to any of clauses 11-16, wherein training the machine
learning model is further based on losses defined as L1
norms between normal maps and masks generated by the
machine learning model and normal maps and masks
included in the training data.

[0080] 18. The computer-implemented method according
to any of clauses 11-17, wherein the training data is gener-
ated by: receiving a three-dimensional (3D) model and
animation data; posing the 3D model based on the animation
data; and rendering the posed 3D model.

[0081] 19. In some embodiments, a computer-readable
storage medium including instructions that, when executed
by a processing unit, cause the processing unit to train a
machine learning model by performing steps comprising:
receiving training data that includes a plurality of rendered
images and an associated set of control points for each
rendered image; and training the machine learning model
based on a perceptual loss between one or more images
generated by the machine learning model and one or more
associated rendered images included in the training data.
[0082] 20. The computer-readable storage medium
according to clause 19, wherein each of the associated sets
of control points includes a respective rendering of a skel-
eton.

[0083] Any and all combinations of any of the claim
elements recited in any of the claims and/or any elements
described in this application, in any fashion, fall within the
contemplated scope of the present invention and protection.
[0084] The descriptions of the various embodiments have
been presented for purposes of illustration, but are not
intended to be exhaustive or limited to the embodiments
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments.
[0085] Aspects of the present embodiments may be
embodied as a system, method or computer program prod-
uct. Accordingly, aspects of the present disclosure may take
the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident soft-
ware, micro-code, etc.) or an embodiment combining soft-
ware and hardware aspects that may all generally be referred
to herein as a “module” or “system.” Furthermore, aspects of
the present disclosure may take the form of a computer
program product embodied in one or more computer read-
able medium(s) having computer readable program code
embodied thereon.

[0086] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
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a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0087] Aspects of the present disclosure are described
above with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, enable the implementation
of the functions/acts specified in the flowchart and/or block
diagram block or blocks. Such processors may be, without
limitation, general purpose processors, special-purpose pro-
cessors, application-specific processors, or field-program-
mable.

[0088] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0089] While the preceding is directed to embodiments of
the present disclosure, other and further embodiments of the
disclosure may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

1. A computer-implemented method for rendering an
image that includes at least one character, the method
comprising:

determining pose information for a first character based

on a control signal; and

processing the pose information using a trained machine

learning model to generate a rendered image of the first
character based on a 3D model of the first character.
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2. The computer-implemented method of claim 1,
wherein determining the pose information includes render-
ing a skeleton.

3. The computer-implemented method of claim 1,
wherein processing the pose information further comprises
generating at least one of a mask, a normal map, and a depth
map associated with the rendering of the first character.

4. The computer-implemented method of claim 3, further
comprising composing the rendered image of the first char-
acter into a scene based on the at least one of the mask, the
normal map, and the depth map.

5. The computer-implemented method of claim 4,
wherein the scene comprises an augmented reality (AR)
scene.

6. The computer-implemented method of claim 4,
wherein the scene is included within a computer-based
game.

7. The computer-implemented method of claim 1,
wherein the machine learning model includes a two-dimen-
sional (2D) U-Net architecture adapted to incorporate three-
dimensional (3D) information.

8. The computer-implemented method of claim 7,
wherein:

the 3D information is processed via layers distinct from

the 2D U-Net architecture; and

the processed 3D information is used to augment the 2D

U-Net architecture via skip connections.

9. The computer-implemented method of claim 7,
wherein the machine learning model is trained based on a
perceptual loss between images generated by the machine
learning model and associated rendered images included in
a set of training data.

10. The computer-implemented method of claim 1,
wherein the control signal comprises a joystick signal or a
video signal.

11. A computer-implemented method for training a
machine learning model, the method comprising:

receiving training data that includes a plurality of ren-

dered images and an associated set of control points for
each rendered image; and

training the machine learning model based on a perceptual

loss between one or more images generated by the
machine learning model and one or more associated
rendered images included in the training data.
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12. The computer-implemented method of claim 11,
wherein each of the associated sets of control points includes
a respective rendering of a skeleton.

13. The computer-implemented method of claim 12,
wherein the rendered images depict a character in poses
corresponding to poses in the renderings of the skeleton.

14. The computer-implemented method of claim 11,
wherein the perceptual loss is defined based on a plurality of
layers of a deep neural network trained for classification.

15. The computer-implemented method of claim 14,
wherein the perceptual loss is defined as an .1 norm C(M*I)
between the images generated by the machine learning
model and the corresponding rendered images in the training
data, wherein M is a mask, [ is an image, and C is a plurality
of layers of a pre-trained convolutional neural network.

16. The computer-implemented method of claim 11,
wherein training the machine learning model comprises
performing one or more adversarial learning operations.

17. The computer-implemented method of claim 11,
wherein training the machine learning model is further based
on losses defined as .1 norms between normal maps and
masks generated by the machine learning model and normal
maps and masks included in the training data.

18. The computer-implemented method of claim 11,
wherein the training data is generated by:

receiving a three-dimensional (3D) model and animation

data;

posing the 3D model based on the animation data; and

rendering the posed 3D model.

19. A non-transitory computer-readable storage medium
including instructions that, when executed by a processing
unit, cause the processing unit to train a machine learning
model by performing steps comprising:

receiving training data that includes a plurality of ren-

dered images and an associated set of control points for
each rendered image; and

training the machine learning model based on a perceptual

loss between one or more images generated by the
machine learning model and one or more associated
rendered images included in the training data.

20. The non-transitory computer-readable storage
medium of claim 19, wherein each of the associated sets of
control points includes a respective rendering of a skeleton.
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